Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films

نویسندگان

  • Marco Piazzi
  • Luca Croin
  • Ettore Vittone
  • Giampiero Amato
چکیده

The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graphene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 950°C-1000°C) involved during the process and of the theoretically expected monolayer self-limiting growth. On the contrary such self-limiting growth is not commonly observed in experiments, thus making the development of techniques allowing for a better control of graphene growth highly desirable. Here we report about the local ablation effect, arising in Raman analysis, due to the heat transfer induced by the laser incident beam onto the graphene sample.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler

Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...

متن کامل

Synthesis of graphene films by rapid heating and quenching at ambient pressures and their electrochemical characterization.

We study the process of graphene growth on Cu and Ni substrates subjected to rapid heating (approximately 8 °C/s) and cooling cycles (approximately 10 °C/s) in a modified atmospheric pressure chemical vapor deposition furnace. Electron microscopy followed by Raman spectroscopy demonstrated successful synthesis of large-area few-layer graphene (FLG) films on both Cu and Ni substrates. The overal...

متن کامل

Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices

Articles you may be interested in Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl. Detection of organic vapors by graphene films functionalized with metallic nanoparticles Oxygen sensing properties at high temperatu...

متن کامل

A review of chemical vapour deposition of graphene on copper†

The discovery of uniform deposition of high-quality single layered graphene on copper has generated significant interest. That interest has been translated into rapid progress in terms of large area deposition of thin films via transfer onto plastic and glass substrates. The opto-electronic properties of the graphene thin films reveal that they are of very high quality with transmittance and co...

متن کامل

Influence of Cu substrate topography on the growth morphology of chemical vapour deposited graphene

Raman spectroscopic maps were used to study the local properties of graphene films as grown on corrugated copper foils, by chemical vapour deposition, and after transfer onto SiO2(300 nm)/Si substrates. Analysis of the Raman peaks show the films exhibit a striped periodic pattern of singleand bi-layer graphene. By performing simultaneous AFM–Raman line maps of the as grown film on Cu we find th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2012